
OA 3302
Summer 2004

Due: 30 August 2004
Computer Lab 06: Random Variate Generation
In this lab you will write classes implementing three methods for generating triang(a,b,c) random

variates: Inverse Transform, Composition and Acceptance/Rejection. An instance of one of the classes you
write can be retrieved from the RandomFactory class and used wherever you have used a RandomVari-
ate instance previously (such as your ArrivalProcess or Server classes).

Concepts
• Inverse Transform method
• Composition method
• Acceptance/Rejection method
• Implementing an interface
• Writing an abstract class

Class Structure
For the complete lab, you will write four classes plus an execution class. In order to simplify the

development and to exploit Object-Oriented reuse, define a base class that implements the common func-
tionality and write individual subclasses that implement specific algorithms. The RandomVariate classes
have the following inheritance structure:

TriangleVariateBase

TriangleITVariate TriangleCVariate TriangleARVariate

(abstract)

Description
This lab consists of the following parts:

1. Write the abstract base class TriangleVariateBase
2. Write the concrete TriangleITVariate subclass
3. Write the TestGenerate class to test TriangleITVariate
4. Modify TestGenerate to create a histogram of generated values
5. Write and test the TriangleCVariate subclass of TriangleVariateBase
6. Write and test the TriangleARVariate subclass of TriangleVariateBase
7. Use your classes to represent triangular random variates in the Multiple Server Queue model

from Lab 02.

1. Write TriangleVariateBase Class
Define the TriangleVariateBase class to implement the simkit.random.RandomVariate

interface. It should be declared abstract because not all of the methods will be implemented. Since all three

versions will use a RandomNumber instance for Un(0,1) random variates and will have three parameters,
these will be in the base class. Since each version will implement a different algorithm, the generate()
method will not be implemented in TriangleVariateBase, but in the subclasses.

The TriangleVariateBase class has four instance variables that should be define with pro-
tected access:1 double variables left, right, and center, and randomNumber, an instance of Ran-
domNumber. Write setters and getters for each of these variables.

The constructor should have zero parameters and should set the randomNumber instance variable,
using RandomNumberFactory.getInstance().2

Next, write setParameters(Object[]) and getParameters(). The setParameters()
method should check that the passed-in argument has exactly three elements and that each one is an
instance of Number. Throw an IllegalArgumentException if this is not the case. The getParame-
ters() method should simply wrap the three double instance variables in an Object[] and return it.

2. Write the TriangleITVariate class
The TriangleITVariate class should extend TriangleVariateBase and should only define

two methods: generate() and toString(). The generate() method should implement the Inverse
Transform method and use randomNumber.draw() to get the Un(0,1) variate.

Generate U ~ Un(0,1)

If U c a–() b a–()⁄<

return a c a–() b a–()U+

else
return b b c–() b a–() 1 U–()–

The toString() method should return a String like: Triangle (1.0, 3.0, 2.0)
[Inverse Transform]. You can put the first part in TriangleVariateBase and append the last part
in the subclass.

3. Write the TestGenerate Class
Write a pure execution class called TestGenerate that obtains an instance of TriangleITVariate and

generates some values from it. Use parameters (1, 2.5, 2) of types (Integer, Float, Long), respec-
tively. Use the seed CongruentialSeeds.SEED[4]. The String you need to pass to the RandomVariate-
Factory is the fully qualified name of the desired class.3 The first five generated values with this seed
should be:4

Triangle (1.0, 2.5, 2.0) [Inverse Transform]
2.228881719724512
1.9309405020272745
2.4086682831918904
1.9601192416410984
1.5665467075046797

1. The access is protected so that the subclasses can conveniently access them.
2. Invoke the setter method in the constructor, passing the return value from RandomNumberFac-

tory.getInstance()
3. That is, oa3302.TriangleITVariate.
4. The first line is from the toString() of TriangleITVariate.
2

Recall that when you used classes from simkit.random, you only had to pass the String that
described the distribution (e.g. “Exponential” instead of its fully qualified name “simkit.ran-
dom.ExponentialVariate”). You can do that with RandomVariate classes you write. What you need to
do is invoke RandomVariateFactory.addSearchPackage(“oa3302”) first. Then you may retrieve
the RandomVariate instance with RandomVariateFactory.getInstance(“TriangleIT”). The
fully-qualified name of the RandomVariate class will always work, but this shortcut will also produce
the desired RandomVariate instance.

4. Modify TestGenerate to Create a Histogram
To see the results of your class visually, use the following code in your main method:1

Dimension screen = Toolkit.getDefaultToolkit().getScreenSize();
Rectangle window = new Rectangle(400, 300);
CloseableDataWindow cdw =

new CloseableDataWindow(rv.toString());
cdw.setBounds((screen.width - window.width) / 2,

(screen.height - window.height) / 2,
window.width, window.height);

GraphStat gs = new GraphStat("Triangle", 0.0);
cdw.add(gs.initHistogram(true, 1.0, 2.5, 50));
cdw.setVisible(true);

In the above code fragment, the first two lines establish the dimensions of the screen and of the
data window. The CloseableDataWindow class is the shell for displaying the histogram and the set-
Bounds() command places the window at the center of the screen. The GraphStat instance produces the
histogram, itself with the initHistogram() method. The two arguments to GraphStat’s constructor
are not used in this lab, but are necessary to instantiate a GraphStat (the String and double can be
arbitrary, in fact).

The arguments to GraphStat’s initHistogram() method are as follows:
• boolean - true if histogram is animated, false if not
• double - lower limit of histogram
• double - upper limit of histogram
• int - number of cells in histogram

Finally, to generate the output, write the following loop in main:
for (int i = 0; i < numberToGenerate; i++) {

gs.sample(0.0, rv.generate());
cdw.repaint();

}

The sample() method of GraphStat requires a double as its first argument for reasons that do not apply
to today’s lab. The second argument is the new observation; GraphStat will put it in the appropriate bin
and update the count. The repaint() method will redraw the histogram after the new observation.

5. Write the TriangleCVariate class
The TriangleCVariate class extends TriangleVariateBase, as TriangleITVariate did,

and uses the composition method to generate a triang(a, b, c) random variate. Use this algorithm in the
generate() method and the toString() to indicate that it is using the Composition method. Modify
TestGenerate to generate a histogram for this method as well.

1. You will have to import java.awt.*; simkit.stat.*; and simkit.util.*; The rv variable is the
RandomVariate to be used.
3

6. Acceptance/Rejection Method
Now write a class called TriangleARVariate that subclasses TriangleVariateBase and

generates triang(a, b, c) random variates using the Acceptance/Rejection method with a uniform majoriz-
ing function. As before, you will only have to write the generate() and the toString() methods. Add
this method to TestGenerate for a third histogram.

7. Use Triangle Variates in the Queueing Model
Finally use your TriangleCVariate and TriangleARVariate as interarrival times for the

multiple server queue model from Lab 2. The output should look something like this:1

Multiple Server Queue
Number Servers: 2
Service Time Distribution: Triangle (2.0, 5.2, 3.6) [Acceptance/Rejection]

Arrival Process
 Interarrival Times: Triangle (1.0, 3.0, 2.0) [Composition]

Simulation ended at time 2000.0000
There have been 1006 customers arrive to the system
There have been 1004 customers served
Average Number in Queue 0.2067
Average Utilization 0.9039

Output
Histograms that should (hopefully) look roughly like the Triangle pdf. Try different parameters for

your Triangle distribution to see their effect. If you change the left and right bounds, change the lower and
upper limits in the initHistogram() method. For the multiple server queue, output approximately cor-
responding to the above.

Deliverables
Turn in your source code a picture of your histograms, and the output from the multiple server

queue run. To print a picture, select the window with the histogram and press <ALT>-Print Screen. Then
open up Wordpad or Word and paste the picture into the document. Finally, print the document.

Frequently Asked Questions

I get the following error:
oa3302.TriangleVariateBase should be declared abstract; it does not define generate()
in oa3302.TriangleVariateBase

Define TriangleVariateBase as abstract (public abstract class TriangleVariate-
Base). It must be declared abstract because the generate() method is only implemented in the sub-
classes.

I get strange errors when I run the histogram part, but the histogram seems to look ok.
If the histogram looks ok, then you can (probably) ignore the errors.

1. Use CongruentialSeeds.SEED[0] for interarrival times and CongruentialSeeds.SEED[1] for service
times. The stopping time is 2000.0. You should not have to modify or recompile the ArrivalProcess or
Server classes
4

I can’t remember the Composition method to generate a triangle variate.
Generate U, V ~ Un(0, 1)
if (V < (c - a) / (b - a))

Return a + (c - a) U
else

Return b - (b - c) 1 U–

I can’t remember the Acceptance/Rejection method for generating a triangle variate.
do {

Generate U, V ~ Un (0,1)
Y = a + (b - a) V

} while ((Y < c && U > (Y - a)/(c - a)) || (Y >= c && U > (b - Y)/(b - c))
return Y;
5

	Computer Lab 06: Random Variate Generation
	Concepts
	Class Structure
	Description
	1. Write the abstract base class TriangleVariateBase
	2. Write the concrete TriangleITVariate subclass
	3. Write the TestGenerate class to test TriangleITVariate
	4. Modify TestGenerate to create a histogram of generated values
	5. Write and test the TriangleCVariate subclass of TriangleVariateBase
	6. Write and test the TriangleARVariate subclass of TriangleVariateBase
	7. Use your classes to represent triangular random variates in the Multiple Server Queue model from Lab 02.

	1. Write TriangleVariateBase Class
	2. Write the TriangleITVariate class
	3. Write the TestGenerate Class
	4. Modify TestGenerate to Create a Histogram
	5. Write the TriangleCVariate class
	6. Acceptance/Rejection Method
	7. Use Triangle Variates in the Queueing Model
	Output
	Deliverables
	Frequently Asked Questions
	I get the following error:
	I get strange errors when I run the histogram part, but the histogram seems to look ok.
	I can’t remember the Composition method to generate a triangle variate.
	I can’t remember the Acceptance/Rejection method for generating a triangle variate.

